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Abstract
We study the Ising and Heisenberg models on one-dimensional ferrimagnetic
bipartite chains with the special AB2 unit-cell topology and experimental
motivation in inorganic and organic magnetic polymers. The spin-1/2 AB2

Ising case is exactly solved in the presence of an external magnetic field.
We also derive asymptotical low- and high-temperature limits of several
thermodynamical quantities of the zero-field classical AB2 Heisenberg model.
Further, the quantum spin-1/2 AB2 Heisenberg model in a field is studied using
a mean-field approach.

PACS numbers: 75.10.Jm, 75.10.−b, 05.50.+q

1. Introduction

The role of topology in determining many general properties of condensed matter systems has
been recognized for a long time. In the context of spin systems, its fundamental influence
has been recently explored in the form of special unit-cell configurations and multi-laddered
structures. In particular, novel polymeric compounds that are expected to display magnetic
properties have been proposed and some of them successfully synthesized [1].

In this work we study the ferrimagnetic bipartite Ising and Heisenberg models on one-
dimensional chains [2] with the special AB2 unit-cell topology, shown in figure 1, and
experimental motivation in inorganic [3] and organic [4] magnetic polymers. This type
of chain has also been associated with the very unusual magnetic properties observed in the
compound Sr0.73CuO2 [5]. Concerning the Hubbard model on these chains, a theorem by Lieb
[6] predicts that bipartite AB2 chains with one electron per site on average (half-filling) and
repulsive Coulomb interaction have ground-state spin per unit cell h̄/2, in agreement with
numerical techniques, such as Hartree–Fock, exact diagonalization and quantum Monte Carlo
[7]. As a consequence of the special unit-cell topology, the very interesting possibility of the
existence of unsaturated ferromagnetic or ferrimagnetic long-range ordered ground states has
emerged for such systems. In the half-filled strong-coupling limit the AB2 Hubbard model
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Figure 1. (a) Spin chain with AB2 unit-cell topology displaying the ferrimagnetic ground state
in zero magnetic field. In inorganic chains A (B) is a metal (ligand) [3]; Sr0.73CuO2 [5] contains
weakly interacting edge-sharing CuO2 chains. (b) ABB ′ structure exhibiting the ferrimagnetic
ground state. In substituted polyacetylenes [4] the lateral radical R∗ (B ′ sites) contains an unpaired
electron.

maps [8] onto the quantum AB2 Heisenberg model with antiferromagnetic (AF) interactions,
whose associated quantum nonlinear σ model contains an extra Wess–Zumino term due to the
AB2 topology. Using renormalization-group techniques and scaling analysis, it was shown
[8] that this ferrimagnetic system presents low-temperature (low-T) critical properties similar
to those of the quantum ferromagnetic AB Heisenberg model, in agreement with the data
for the organic ferromagnetic polymer, p-NPNN [9]. Further studies on these ferrimagnetic
AB2 chains include rigorous results [10], finite size and conformal invariance [11], density-
matrix renormalization group [12], spin-wave and mean-field approximations [13]. It should
be noted that there is a close correspondence between the ground-state properties of the
AB2 and mixed-spin chains [11, 12], as evidenced by their spin-wave dispersion relations
[13, 14]. Also, the effect of frustration between sites B, not considered here, has been
investigated in some detail, including ground-state [15] and thermodynamical [16] properties,
as well as magnetic field effects [17]. Besides the various important theoretical aspects put
forward in this frustrated case, it is of relevance in the description of several physical properties
of the compound Cu3Cl6(H2O)·2H8C4SO2. The effect of the electron–phonon coupling on the
formation of spin- and charge-density waves on these systems has also been investigated [18].

In section 2, we exactly solve the spin-1/2 Ising model on an AB2 chain in the presence of
an external magnetic field H. This case is of interest for real systems with very strong uniaxial
anisotropy and also to learn about the behaviour of spins on AB2 chains under freezing of their
transversal quantum fluctuations. We study several thermodynamical properties and show that
the ferrimagnetic ground state undergoes a first-order phase transition to a paramagnetic state
at a critical field Hc. In section 3 we obtain asymptotical low- and high-T limits of several
thermodynamical quantities of the classical Heisenberg model on AB2 chains in zero field. In
particular, the leading term of the low-T expansion of the susceptibility is shown to behave as
T −2, similar to the quantum [9] and classical [19, 20] AB and quantum AB2 [8] Heisenberg
chains. Finally, section 4 is devoted to the study of the quantum spin-1/2 Heisenberg model
on an AB2 chain in the presence of a field using a mean-field approach. In this case we show
that the ferrimagnetic ground state exhibits a continuous phase transition driven by H, such
that the unit-cell magnetization increases linearly with H before saturation. Conclusions are
presented in section 5.
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2. Ising model on AB2 chains

In the presence of a strong uniaxial anisotropy a magnetic system displays Ising behaviour, a
feature which has been widely explored in the context of statistical mechanics and complex
systems [21]. In this section, we consider the spin-1/2 Ising model on the bipartite AB2 chain
of N sites (N/3 is an integer) shown in figure 1(a). The Hamiltonian of the system is

H = J/h̄2
∑

〈iα,jβ〉
ŜiαŜjβ − gµBH/h̄

∑
iα

Ŝiα (1)

where Ŝiα are Ising spin operators with eigenvalues ±h̄/2, H denotes the applied magnetic
field along the z direction, g is the gyromagnetic factor and µB is the Bohr magneton; J > 0 is
the AF exchange coupling between nearest-neighbour A–B sites, whose locations are denoted
by iα and jβ, with i, j = 1, 2, . . . , 2N/3 and α, β = A,B1, B2. In our notation, type A

(B) sites are identified by odd (even) i, j indices. No coupling is considered between spins
at B sites. Periodic boundary conditions imply that Ŝ(2N/3)B1 and Ŝ(2N/3)B2 couple to Ŝ1A. By
summing over the Ising variables Siα = ±1, α = B1, B2, and requiring the invariance of the
partition function after decimation [22], we obtain

Z(T ,H) = (2f )N/3
∑
{S}

exp


q1

∑
〈i,j〉

SiSj + (2q2 + K1)
∑

i

Si


 (2)

where {S} indicates the sum over all configurations of the remaining N/3 spins at sites A (for
simplicity we have dropped the labels α, β), K1 = βgµBH/2,

q1(T ,H) = 1

2
ln

{
cosh[β(gµBH − J )/2] cosh[β(gµBH + J )/2]

cosh2(βgµBH/2)

}
(3)

q2(T ,H) = 1

2
ln

{
cosh[β(gµBH − J )/2]

cosh[β(gµBH + J )/2]

}
(4)

and

f (T ,H) = 2 cosh(βgµBH/2){cosh[β(gµBH − J )/2] cosh[β(gµBH + J )/2]}1/2 (5)

with β = 1/kBT . It is thus clear that Z(N/3) = (2f )N/3Z0(N/3), where Z0(N/3) is the
partition function of the spin-1/2 Ising model on a linear chain of N/3 sites, with effective
coupling constants J ∗ between odd sites and effective field H ∗ given by

J ∗(T ,H) = −4q1

β
H ∗ = H +

4q2

βgµB

. (6)

Therefore, the Gibbs free energy per site of the ferrimagnetic spin-1/2 AB2 Ising chain is
obtained by inserting equation (6) into the well-known solution of the spin-1/2 linear Ising
chain in a field [22]

G = − 1

3β
ln(2f ) +

J ∗

12
− 1

3β
ln{cosh(βgµBH ∗/2) + [sinh2(βgµBH ∗/2) + exp(βJ ∗)]1/2}.

(7)

Before investigating the thermodynamical properties of the system, we find it helpful
to look in some detail at the effective coupling constants. In figures 2(a) and (b) we plot
J ∗ and H ∗ as a function of the dimensionless magnetic field, gµBH/J , and dimensionless
temperature, x = kBT /J , respectively. As shown in figure 2(a), the effective coupling
J ∗ is negative in general and vanishes for T = ∞ in any H (paramagnetic limit). At
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Figure 2. (a) Effective coupling constant J ∗ , (b) effective field H ∗ and (c) average spin per unit
cell in units of h̄ as a function of the dimensionless magnetic field, gµBH/J , and dimensionless
temperature, t = kBT /J , for the ferrimagnetic spin-1/2 AB2 Ising chain.

T = 0 and H = 0, the result J ∗ = −2J clearly indicates the presence of a ferrimagnetic
structure with spins at the B sites pointing, say, up, and those at the A sites pointing in the
opposite direction (see figure 1), thus resulting in a nonzero ground-state spin per unit cell (see
figure 2(c)). As the field increases at T = 0, the magnitude of the effective ferromagnetic
coupling between the odd A sites decreases linearly with H and vanishes for H � J/gµB . As
one sees from equations (3), (4) and (6), this result reflects the complex interplay between J

and H in determining J ∗. Conversely, figure 2(b) shows that at T = 0 the effective field H ∗

first decreases linearly with H up to H = J/gµB . In fact, it is noted in equation (6) that H ∗

is a result of the applied magnetic field plus a term involving both J and H. Therefore, since
H is parallel to the magnetization of the B sites, for H < J/gµB the combined effect with the
exchange coupling simulates an effective field pointing parallel to the magnetization of the A

sites. For H = J/gµB , J ∗ = 0 and H ∗ = −H is the only remaining effective force to align
the magnetization of the A sites. For H > J/gµB , H ∗ increases steadily, changing sign at the
critical field Hc = 2J/gµB , where a first-order transition to a saturated ferromagnetic state
takes place (see figure 2(c)). At this transition, both J ∗ and H ∗ nullify. At finite temperatures
the described effects are less dramatic. For example, J ∗ is never nullified and only at very low
temperatures H ∗ eventually points antiparallel to H.

Some features of the above discussion clarify the behaviour of the magnetization (magnetic
moment per spin) of the system, M(T,H) = −∂G/∂H |T , shown in figure 2(c). In the T → 0
limit with finite H, we obtain M(H) = gµB [1 + 2θ(gµBH − 2J )]/6, where θ(x) is the
Heaviside function. Note the discontinuity in the ground-state magnetization at the critical
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Figure 3. (a) Two-spin correlation function as a function of site separation m between A sites of the
ferrimagnetic spin-1/2 AB2 Ising chain (solid curve) and between odd sites of either ferromagnetic
or AF spin-1/2 linear Ising chains (dashed curve). (b) Two-spin correlation function as a function
of site separation m between A and B sites of the ferrimagnetic spin-1/2 AB2 Ising chain (solid
curve) and between even and odd sites of the AF spin-1/2 linear Ising chain (dashed curve). In
(a) and (b) curves are plotted for the dimensionless temperature t = kBT /J .

field Hc = 2J/gµB , while for T > 0 the zero-field magnetization is null and the step-like
behaviour is smoothed out as T increases.

We are also particularly interested in calculating the zero-field thermodynamical limit of
the two-spin correlation function, defined by

〈Spγ Srδ〉 = lim
N→∞

1

Z

∑
{S}

Spγ Srδ exp


K2

∑
〈iα,jβ〉

SiαSjβ


 (8)

where Z = (2f )N/3[(2 cosh q1)
N/3 + (2 sinh q1)

N/3] is the zero-field partition function. All
kinds of correlation can be expressed in the closed form:

〈Spγ Srδ〉 = [− tanh(βJ/2)]u

[1 + sech2(βJ/2)]v
. (9)

For the case in which both spins are at sites A we choose p = 1, r = 2m − 1 and γ = δ = A,
and find u = 2m−2 and v = m−1 obtained after performing the summation over the even sites
in equation (8) followed by additional careful steps. If one considers either a ferromagnetic
or an AF Ising chain [20]1 the correlation between parallel spins is given by the numerator of
equation (9) with J → J/2, as illustrated in figure 3(a), where the AB2 case is also plotted.
For the case in which the spins are at sites A and B we use p = 1, r = 2m, γ = A and
δ = B1 or B2, so equation (9) applies with u = 2m − 1 and v = m. Such a result is plotted in
figure 3(b) and compared with the correlation between antiparallel spins in an AF Ising chain
[20]. Finally, we consider the case in which both spins are at sites B (either B1 or B2): for
m � 2, using p = 2, r = 2m and γ = δ = B, we obtain u = 2m − 2 and v = m, whereas
for m = 1, we get u = 2 and v = 1, except for the autocorrelation function 〈S2BS2B 〉 = 1, as
expected.

The above results for the correlation functions can be confirmed through the use of the
fluctuation–dissipation theorem:

χ = −
(

∂2G

∂H 2

)
H=0

= lim
N→∞

1

4N
β(gµB)2

∑
〈pγ,rδ〉

〈Spγ Srδ〉 (10)

1 Note that in the case of the linear Ising model both authors, Thompson and Stanley, consider spin S = 1 thus
implying an exchange coupling one-quarter of the value used in the present work.
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where the factor 1/4 appears because Spγ = ±1. It reads

χ = lim
N→∞

β

4N
(gµB)2

N/3∑
p=1

N/3∑
r=1

[〈S(2p−1)AS(2r−1)A〉 + 4〈S(2p−1)AS(2r)B〉 + 4〈S(2p)BS(2r)B〉]

= β(gµB)2

12[1 + sech2(βJ/2)]
{4sech2(βJ/2)

+ [1 − 2 tanh(βJ/2)]2[1 + cosh2(βJ/2)]} (11)

in which equations (7) and (9) have been used, leading to the same result as above.
Before closing this section one should note that both the H-dependent magnetization and

the T-dependent susceptibility are important quantities that characterize the thermodynamical
behaviour of the AB2 Ising chain and may be of interest to help identify the presence of the AB2

unit-cell topology in magnetic materials under strong uniaxial anisotropy. In fact, deviations
from the standard prediction based on pure linear chains, as well as single-ion anisotropy
effects, have been extensively studied in real ferrimagnetic compounds [23]. Further, from
the results above, as T → 0 and H = 0 we obtain the correlation length, ξ ∼ exp(βJ ),
and also 
G ≡ G(T ) − G(T = 0) ∼ ξ−1 and χ ∼ ξ , which implies the following relation
between the corresponding critical exponents: γ = ν = 2 − α. On the other hand, from the
behaviour of the correlation function at T = 0 and the magnetization at T = 0 and H → 0,
we find η = 1 and δ = ∞. The above-described critical behaviour belongs to the same class
of universality as a variety of decorated one-dimensional Ising systems [22].

3. Classical Heisenberg model on AB2 chains

The classical Heisenberg model has been the subject of extensive investigation, particularly
in the light of soluble models and rigorous results in statistical physics [2, 20]. Further, the
classical Heisenberg chain has been shown to display a rich dynamics in terms of magnons
and solitons [24]. In this section we consider the zero-field classical isotropic Heisenberg
Hamiltonian on AB2 chains, defined by

H = J
∑

〈iα,jβ〉
	Siα · 	Sjβ (12)

where J > 0, 	Siα are classical unit vectors and open boundary conditions are used. The
partition function thus reads

ZN =
∫

· · ·
∫ (∏

iα

diα

4π

)
exp

{−βJ
[ 	S1 · ( 	S2B1 + 	S2B2

)
+
( 	S2B1 + 	S2B2

) · 	S3 + · · · + 	S(2N/3)−1 · ( 	S(2N/3)B1 + 	S(2N/3)B2

)]}
(13)

in which diα denotes the element of solid angle for the vector 	Siα . The free energy per site
then follows

F(T ) = − 1

β
lim

N→∞
ln ZN

N
= − 1

3β
ln ζ (14)

where

ζ =
∫ ∫

d2B1

4π

d2B2

4π
exp

[−βJ
(
cos θ2B1 + cos θ2B2

)] sinh
(
βJ
∣∣ 	S2B1 + 	S2B2

∣∣)
βJ
∣∣ 	S2B1 + 	S2B2

∣∣ (15)

obtained after integration over 1, with polar axis for 	S1 referred to as 	S2B1 + 	S2B2 , whereas the
integrations over 2B1 and 2B2 have 	S3 as the polar axis. Moreover, to derive equation (14)
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use was made of the iterating property ZN = ζZN−3, so ZN = ζ (N/3)−1[sinh(βJ )/(βJ )]2, in
which the last factor is a surface term due to the open boundary condition.

Unlike the one-dimensional AB chain [19, 20], in which case one deals only with single
angular integration at each step of the iteration procedure, the double integral in equation (15)
presents serious difficulties and thus in the following we derive the asymptotical behaviour
of F at high- and low-T. For βJ → 0, by expanding the integrand of equation (15) up to
O[(βJ )4], we obtain

F(T ) = − 1

β

[
2

9
(βJ )2 +

2

405
(βJ )4 + · · ·

]
βJ → 0. (16)

The first term of F above is 4/3 larger than Fisher’s result [19], while the second term has a
different sign; in both cases the specific heat approaches zero as T −2.

At low-T we note that for the AB2 ferrimagnetic structure the integrand of equation (15)
decreases rapidly for

(
θ2B1, θ2B2

)
far from (π, π), so we expand it up to second order in the

polar angle deviations, δθ2B1 = θ2B1 − π and δθ2B2 = θ2B2 − π . The resulting multiple angle
integral can thus be evaluated using a saddle-point approach, i.e., by taking the upper limit of
polar angle integrations to infinity with negligible error at low-T, thus implying

F(T ) = 1

β
ln βJ +

5

3β
ln 2 − 4

3
J − 1

12β2J
+ · · · βJ → ∞. (17)

The first term of F coincides with that of Fisher [19], while the remaining ones differ in
magnitude. It should be noted that this type of low-T expansion presents unrealistic features
typical of any classical spin model, particularly concerning the specific heat and entropy
behaviour. However, the susceptibility usually displays well-defined low-T behaviour.

In order to calculate the zero-field susceptibility, the thermodynamical limit of the two-
spin correlation function should be evaluated:

〈
Sz

iαSz
jβ

〉 = lim
N→∞

1

ZN

∫
· · ·
∫ (∏

iα

diα

4π

)
Sz

iαSz
jβ exp

{− βJ
[ 	S1 · ( 	S2B1 + 	S2B2

)
+ · · ·

+ 	S(2N/3)−1 · ( 	S(2N/3)B1 + 	S(2N/3)B2

)]}
. (18)

Here we must also consider all distinct correlation functions that have been calculated for
the Ising case. We do so by generalizing the approach used to calculate the low- and high-T
expansions of the free energy, including the need for the expansion of the integrand up to
second order both in polar and azimuthal angle differences. Thus, using equation (11) and
omitting the spin-1/2 factor 1/4, the high-T and low-T expansions of the zero-field magnetic
susceptibility of the classical ferrimagnetic AB2 chain read, respectively

χ = 1
3β(gµB)2

[
1 + 8

9βJ + 16
27 (βJ )2 + · · ·] βJ → 0 (19)

χ = 2
9β2J (gµB)2 [1 − 13

4 (βJ )−1 + · · ·] βJ → ∞. (20)

The above results should be compared with Fisher’s results for the classical ferromagnetic
linear Heisenberg chain [19],

χF = 1
3β(gµB)2 [1 + 2

3 (βJ ) + 2
9 (βJ )2 + · · ·] βJ → 0 (21)

χF = 2
3β2J (gµB)2 [1 − 1

2 (βJ )−1 + · · ·] βJ → ∞ (22)

and that of Takahashi for the quantum ferromagnetic spin-1/2 linear Heisenberg chain at
low-T [9]:

χT = 2

3
β2J (gµB)2

[
1 − 3ζ(1/2)√

2π
(βJ )−1/2 +

3ζ 2(1/2)

2π
(βJ )−1 + · · ·

]
βJ → ∞ (23)

where ζ(1/2)/
√

2π � −0.583.
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From the above equations we note that at high-T the leading term in both Fisher’s result
and in the AB2 susceptibility gives the correct paramagnetic limit, also found by Takahashi2

[9]. At low-T Fisher’s and Takahashi’s leading terms coincide and are three times larger
than that of the AB2 susceptibility, probably due to a unit-cell effect (AB2 ferrimagnetic
structure) in the low-T and long-wavelength limit. This T −2 behaviour was also obtained for
the quantum AB2 Heisenberg chain, but the amplitude of this term could not be fixed by the
renormalization-groupprocedure [8]. It remains to be checked if this amplitude coincides with
that calculated for the classical Heisenberg model. Note also that in the quantum case [9],
equation (23), there is an extra (βJ )−1/2 term possibly associated with the low-T spin-wave
contribution. In fact, this type of contribution dominates the low-T behaviour of the specific
heat, C ∝ T 1/2 [8, 9], thus correcting the classical anomalous behaviour [19], as required by
the third law of thermodynamics.

4. Quantum Heisenberg model in a field: mean-field approach

The quantum spin-1/2 Heisenberg Hamiltonian on the AB2 chain is given by

H = J/h̄2
∑

〈iα,jβ〉
Ŝiα · Ŝjβ − gµBH/h̄

∑
iα

Ŝz
iα (24)

where J > 0, the magnetic field H is applied along the z direction and Ŝiα denotes the
quantum spin operator at the site iα, with components defined in terms of Pauli matrices,
Ŝ

µ

iα = (h̄/2)σ
µ

iα, µ = x, y, z. Note that, in contrast with the Hamiltonians studied in [15], no
coupling between spins at sites B is considered in equation (24). As required in a mean-field
approach, the Weiss molecular fields at sites A and B read

〈ŜA〉 = −gµBh̄

2J
	HB 〈ŜB〉 = −gµBh̄

4J
	HA (25)

in which 〈Ŝα〉 represents the quantum thermal mean values of the spin operators and a sum
over the nearest-neighbour sites is implied.

First we shall discuss the simplest case in which the molecular fields are assumed to be
parallel to the z direction. In this case, the quantum thermal spin values at sites A and B can
be used to derive the set of coupled equations for the molecular fields:

HA = − 2J

gµB

tanh

[
βgµB(HB + H)

2

]
HB = − J

gµB

tanh

[
βgµB(HA + H)

2

]
. (26)

Our main goal is to find the ground-state magnetization as a function of H. Therefore, by
letting β → ∞ in equation (26), we find

HA = − 2J

gµB

HB + H

|HB + H | HB = − J

gµB

HA + H

|HA + H | . (27)

Using the conditions, limH→0+

〈
Ŝz

A

〉 = −h̄/2 and limH→0+

〈
Ŝz

B

〉 = h̄/2, suitable to describe the
AB2 ferrimagnetic ground state, the solution of equation (27) is found to be

HA = −2J/gµB HB =
{
J/gµB 0 < H < Hc

−J/gµB H > Hc
(28)

where Hc = 2J/gµB (see below). From equations (25) and (28), we obtain〈
Ŝz

B

〉 = h̄/2
〈
Ŝz

A

〉 = {−h̄/2 0 < H < Hc

h̄/2 H > Hc
(29)

2 Note that Fisher’s [19] and Takahashi’s [9] exchange couplings and gyromagnetic factors compared to those used
in the present work are as follows: JF = 2J, gF = 2g, and JT = 4J, gT = 1 (with µB = 1 and S = 1/2).
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implying the local magnetization per unit cell

〈Ŝz〉 = 2
〈
Ŝz

B

〉
+
〈
Ŝz

A

〉 = {h̄/2 0 � H < Hc

3h̄/2 H � Hc
(30)

and identifying Hc as the critical field below which the ferrimagnetic ordering is favoured, in
agreement with the exact result for the spin-1/2 Ising model on the AB2 chain (see section 2).

Let us now consider the situation in which the transversal x and y components are also
present. In this case, the expectation values at T = 0 are given by

〈
Ŝz

A(B)

〉 = h̄

2

(
Hz

A(B) + H
)

| 	HA(B) + 	H |
〈
Ŝ

µ

A(B)

〉 = h̄

2

H
µ

A(B)

| 	HA(B) + 	H | µ = x, y. (31)

In order to solve the coupled equations (25) and (31), it is convenient to define

H1 = [H 2
Ax + H 2

Ay + (HAz + H)2]1/2
(32)

H2 = [H 2
Bx + H 2

By + (HBz + H)2]1/2
. (33)

It turns out that if 2H1H2 = H 2
c , then H

µ

A = H
µ

B = 0, µ = x, y, and we reobtain the Ising-like
solution already discussed. On the other hand, if 2H1H2 = H 2

c the solution satisfies

HcH
µ

A = −2H1H
µ

B µ = x, y (34)

Hc
(
Hz

A + H
) = −2H1H

z
B (35)

Hc
(
Hz

B + H
) = −H2H

z
A. (36)

The solution of the equations above is shown to be

Hx
A = −Hx

B H
y

A = −H
y

B (37)

Hz
A = −3H 2

c

8H
− H

2
(38)

Hz
B = 3H 2

c

8H
− H

2
(39)

along with the following constraint over H:

Hc

2
� H � 3Hc

2
. (40)

Otherwise the Ising-like solution holds.
It should be noted that, in contrast to Hz

A and Hz
B , the remaining x and y components

are undetermined, varying between Hc/2 and 3Hc/2. In spite of this, the magnitude of
	Hα⊥ = x̂H x

α + ŷH
y
α , α = A,B, is precisely determined by the value of H from equations (25)

and (41) (see figure 4)

| 	HA⊥| = | 	HB⊥| =
[(

9H 2
c − 4H 2

)(
4H 2 − H 2

c

)]1/2

32H
(41)

with fixed angle φ = π between 	HA⊥ and 	HB⊥.
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Figure 4. Magnitude of the Weiss molecular field | 	HA⊥| = (H 2
Ax + H 2

Ay)1/2 as a function of
the reduced field, H/Hc, for the quantum ferrimagnetic spin-1/2 AB2 Heisenberg chain, with
Hc = 2J/gµB .

We can now proceed to obtain the local z-component of the magnetization on sites A and B.
Upon substituting equations (38) and (39) into equation (31), we obtain

〈
Ŝz

A

〉 =




− h̄

2
0 � H <

Hc

2

− h̄

2

(
3Hc

4H
− H

Hc

)
Hc

2
� H � 3Hc

2
h̄

2
H >

3Hc

2

(42)

and

〈
Ŝz

B

〉 =




h̄

2
0 � H <

Hc

2
h̄

2

(
3Hc

8H
+

H

2Hc

)
Hc

2
� H � 3Hc

2
h̄

2
H >

3Hc

2

(43)

which are plotted in figures 5(a) and 5(b). As seen from these figures, for 0 � H < Hc/2 the
field aligns the spins in the z direction, with zero average values of the transversal components,
while the ferrimagnetic structure is sustained. For Hc/2 < H < 3Hc/2 the average spin at
sites A continuously rotates seeking a full alignment with the field. This effect is accompanied
by a rotation of the spins at sites B, such that for each value of the H the transversal components
at sites A and B are cancelled out (see equation (41)). To achieve this cancellation the spins
at sites B rotate in the opposite direction up to a maximum polar angle θ = 30◦ (from
equations (42) and (43)) and then rotate back. The final result is that the unit-cell average
spin, 〈Ŝz〉 = 2

〈
Ŝz

B

〉
+
〈
Ŝz

A

〉
, increases linearly with H for Hc/2 < H < 3Hc/2. For H � 3Hc/2

saturation occurs, as shown in figure 5(c):

〈Ŝz〉 =




h̄

2
0 � H <

Hc

2
h̄H

Hc

Hc

2
� H � 3Hc

2
3h̄

2
H >

3Hc

2
.

(44)
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Figure 5. Local magnetization at sites A (a), sites B (b) and per unit cell (c), in units of h̄, as a
function of the reduced field, H/Hc, for the quantum ferrimagnetic spin-1/2 AB2 Heisenberg chain,
with Hc = 2J/gµB . (d) Field dependence of the Gibbs free energy shows that the continuous
solution (solid line) for the magnetization is the stable phase. The Ising-like solution is shown for
comparison (dashed line).

It is worth mentioning that a linear increase of the magnetization with H has been observed
in an organic magnetic compound exhibiting a canted magnetic structure and attributed to
the Dzyaloshinskii–Moriya interaction and an additional weak local anisotropy [25]. Here,
the mentioned linear behaviour is due to a combined effect of the exchange force and the
special topology of the unit cell. Whether this behaviour is robust under the effect of
quantum and thermal fluctuations, particularly near the threshold fields, is an issue for future
investigation.

The above features are corroborated by studying the stability of the system through the
Gibbs free energy,

G(H) = −
∫ H

0
M(H ′) dH ′ (45)

along the isotherm T = 0. By using the Ising-like solution, equation (30), in equation (45),
we obtain

G(H) =




−gµBH

2
0 � H < Hc

−3gµBH

2
+ gµBHc H � Hc

(46)
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while the integration of equation (44) using equation (45) yields

G(H) =




−gµBH

2
0 � H <

Hc

2

−gµBHc

8
− gµBH 2

2Hc

Hc

2
� H <

3Hc

2

−3gµBH

2
+ gµBHc H >

3Hc

2
.

(47)

In figure 5(d) we compare the solutions given by equations (46) and (47) and conclude that
indeed, for Hc/2 � H � 3Hc/2, the stable magnetization configuration is that with nonzero
transversal average spin components.

5. Conclusions

In this work we have studied the Ising and Heisenberg models on one-dimensional bipartite
ferrimagnetic chains with the special AB2 unit-cell topology, shown in figure 1, and
experimental motivation in inorganic and organic magnetic polymers. The predicted behaviour
for the several reported thermodynamical quantities may appear useful in the identification of
the AB2 structure in real magnetic compounds,as well as for general considerations concerning
the presence of magnetic uniaxial anisotropy and the role played by quantum and thermal
effects in determining the thermodynamics of this very interesting system. In particular, we
mention that while in the Ising version a first-order transition takes place in the presence of a
field, in the Heisenberg case a quite exotic continuous spin–flop type transition is predicted,
leading to a linear increase of the unit-cell magnetization with field before saturation. Finally,
we stress that the thermodynamics of the quantum spin-1/2 Heisenberg model on AB2 chains
still lacks a more complete description. Many features associated with this case are under
current investigation using a variety of analytical and numerical techniques.
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